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The temporal magnetization-direction fluctuations in the three-dimensional classical ferromagnetic
Heisenberg model have been generated by Monte Carlo simulation and analyzed by the rescaled-range
method to yield the Hurst exponent H. A value of H~1 has been found to apply in the ferromagnetic
phase characterizing fractional Brownian motion, whereas a value H ~0.5, reflecting ordinary Brownian
motion, applies in the paramagnetic phase. A field-induced crossover from fractional to ordinary
Brownian motion has been observed in the ferromagnetic phase.

PACS number(s): 64.60.Cn, 05.40.+j, 75.10.Hk

In a recent combined theoretical and experimental
study of the director fluctuations in nematic liquid crys-
tals [1,2] it was found from time-series analyses that the
accumulated director fluctuations, X (¢), in the nematic
phase exhibit a scaling property corresponding to frac-
tional Brownian motion characterized by a Hurst ex-
ponent [3-6] with a value H ~1, which indicates devia-
tion from ordinary Brownian motion (H =1) [4]. The
director in the nematic phase is subject to a continuous
symmetry, and it is the presence of power correlations in
the director motions that causes fractional Brownian
motion to occur. Other systems that also possess con-
tinuous symmetry and a Goldstone mode in the ordered
phase were suggested as also displaying fractional
Brownian motion [1].

In the present paper we present the results of a Monte
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Carlo simulation study of the temporal fluctuations in the
magnetization direction of the three-dimensional classical
ferromagnetic Heisenberg model. Our main result is that
the continuous symmetry in the magnetic system, in the
same way as in the liquid crystal [1], leads to fractional
Brownian motion, and that it is described by the same
value of the Hurst exponent, H~1, as in the liquid-
crystal system. Furthermore, a crossover to ordinary
Brownian motion and H = can be induced by a uniform
magnetic field which breaks the continuous symmetry of
the magnetic order.

The three-dimensional ferromagnetic Heisenberg mod-
el is defined by the Hamiltonian

ﬂ=—-] 2 S,'Sj—h ZSH- > (1)
(i) i
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where S, =(S;,S,;,S,) is a classical spin vector of unit
length, A is a uniform magnetic field applied in the z
direction, and J >0. The Heisenberg model in zero field
has a second-order phase transition from a ferromagnetic
phase to a paramagnetic phase at kzT,./J =1.44. The
order parameter in the ferromagnetic phase is a macro-
scopic magnetic moment specified by a length (the mag-
netic order parameter) and a direction in space. The
magnetization direction is not coupled to the lattice.
Hence the ferromagnetic order is of continuous symme-
try, O(3).

We have calculated equilibrium time series of the mac-
roscopic magnetization direction, €(1)=3;S,;/|3;S;!
given by its components €,(t), a=x,y,z, as well as
the time series of the magnetic order parameter
m(t)=L 3| 3;S;|. The calculations are carried out by
conventional Monte Carlo simulation on a simple cubic
lattice with periodic boundary conditions and L3=28°
lattice sites. This lattice size was shown to represent the
thermodynamic limit by performing test calculations on
other lattice sizes. The calculations are performed using
single-site Glauber dynamics involving attempts to rotate
the direction of the individual spins through a random
solid angle. The time is measured in units of Monte Car-
lo steps per lattice site (MCS/S). The Glauber dynamics,
which corresponds to the overdamped regime of the
model dynamics, does not conserve the magnetic order
parameter. This dynamics is not the true dynamics of an
isolated spin system described by angular momentum
operators for which the magnetization as well as the mag-
netization direction are conserved quantities. For a sys-
tem quenched out of equilibrium, the true dynamics is,
however, determined by the details in the coupling be-
tween the spin system and the environment.

Time series for €(¢) and m (¢) have been determined for
different temperatures both in the ordered ferromagnetic
phase and in the disordered paramagnetic phase. Results
have been obtained in zero magnetic field, 2 =0, as well
as for a series of finite field values. The time series have
been analyzed by the rescaled-range (R /S) method [1-6]
as well as via the power spectrum

2
P()=| [ X (Dexp(—i2nfodi @)

of the accumulated fluctuations X (z). For a time series
u (t), we determine the accumulated fluctuations over the
time range T as

t
X(t,n)= 3 [u)—u),], (3)

t'=1
where the average of the stochastic variable u (¢) over the
same time range is given by
1 T
(u) == uln. @)
Ti=1
The R /S analysis is based on a range
R =max[X(t,7)]—min[X (¢,7)], 0<t=7 (5)

and a standard deviation
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FIG. 1. Log-log plot of the R /S value vs time range 7 for the
zero-field magnetization direction fluctuations at three different
temperatures in the ferromagnetic phase: T/7.=0.14 (0O),
T/T.,=0.69 (O), T/T,=1.00(0); and one temperature in the
paramagnetic phase: T/7,=1.39(@). The best linear fits to
the data sets are given by the solid lines, R /S ~ 7, with slopes
H as indicated.
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In terms of these quantities, the Hurst exponent describes
the scaling properties of the accumulated fluctuations as

(6]
R/S~7. 7

Provided scaling holds [6], the scaling power 8 of the
power spectrum in Eq. (2), P(f)~f P, is related to the
Hurst exponent as S=2H +1. For a time series of sta-
tistical independent events H =, which corresponds to
ordinary Brownian motion. For H#1, the correlation
function has power-law decay and infinitely long correla-
tions. This latter case has been termed fractional
Brownian motion by Mandelbrot [4].

A selection of the data for the R /S values, as a func-
tion of time range 7, obtained for the magnetization
direction fluctuations is given in Fig. 1. The magnetiza-
tion direction fluctuations calculated are recorded as the
fluctuations in one of the components of €(¢). All three
components are found to behave statistically similarly.
The data in Fig. 1 for three different temperatures in the
ferromagnetic phase show that the fluctuations display a
remarkably clear scaling behavior over a wide range of =
characterized by a Hurst exponent, H ~ 1, which implies
fractional Brownian motion. The value of H is indepen-
dent of temperature and remains at the value H ~1 up to
the critical point. In contrast, the data for the magneti-
zation direction fluctuations in the paramagnetic phase
shown in Fig. 1 demonstrate that ordinary Brownian
motion, H =1, applies over long time ranges. The corre-
sponding data for the power spectrum, P(f) in Eq. (2),
shown in Fig. 2 supports this picture and indicates that
the scaling relation S=2H +1 holds, at least at low fre-
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FIG. 2. Log-log plot of the power spectrum, P(f) in Eq. (2),
vs frequency f (in units of reciprocal MCS/S) for the magnetiza-
tion direction fluctuations at a temperature 7/7T,=0.14 in the
ferromagnetic phase. The data correspond to four different
values of the applied magnetic field: 4 /J =0 (@), 0.4 (0), 0.75
(O), and 1.0 (). The solid lines have slopes H, as indicated.

quencies. This is in close accordance with our previous
findings for the liquid-crystal model [1], where the scaling
power f3, obtained from the power spectrum, was close to
—3 for low frequencies and displayed a crossover to a
smaller exponent ~ —4 for higher frequencies. Our data
for the power spectrum are not accurate enough to assess
whether this behavior may suggest a breakdown of the
scaling relation, S=2H +1.

If the continuous symmetry of the ferromagnetic order
is broken by an ordering field, the fractional Brownian
motion in the ferromagnetic phase is destroyed, as seen in
Fig. 3, and there is a crossover to ordinary Brownian
motion over long time ranges corresponding to a Hurst
exponent value of H =~0.5. The crossover occurs at
shorter time ranges, the stronger the field is. A related
crossover is also seen in the power-spectrum data in Fig.
2.

In contrast to the fluctuations in the magnetization
direction (in the absence of a field) the fluctuations in the
order parameter (magnetization) shown in Fig. 4 for
T#T, exhibit ordinary Brownian motion (H =1) in ei-
ther phase. It should be noted that the order parameter
in a finite system assumes a finite value above T,. The
order-parameter fluctuations exhibit normal Brownian
motion independent of temperature and independent of
the strength of the applied magnetic field. At the critical
point, the order-parameter fluctuations (in zero magnetic
field) should exhibit power-law correlations and a Hurst
exponent different from 1. It is difficult to sample the
order-parameter fluctuations at the critical point in a
finite system over long time ranges. Furthermore, the ac-
cumulated fluctuations over long ranges may be sensitive
to the precise value used for the transition temperature.
The data shown in Fig. 4 for the order-parameter fluctua-
tions at the critical point T =T, for the infinite system

suggest that the Hurst exponent value differs from 1 at

RAPID COMMUNICATIONS

R2329
5.0 T
h/J
4.0}
& 3.0
[and
e 4
8, 2.0
1.0 |
0.0 122
0.0 1.0 5.0

2.0 3.0
log,, (T)

FIG. 3. Log-log plot of the R /S value vs time range 7 for the
magnetization direction fluctuations at a temperature
T/T,=0.14 in the ferromagnetic phase. The data correspond
to four different values of the applied magnetic field:
h/J =0 (@), 0.4 (0), 0.75 (O), and 1.0 (). The best linear fits
to the data sets over long time ranges are given by the solid
lines, R /S ~7H, with H ~1 for zero field and H ~0.5 for finite
fields.

intermediate time ranges and increases towards H =1.
At large time ranges the effective exponent value is in be-
tween 4 and 1, but the system size is too small to reliably
determine the order-parameter fluctuations over long
time ranges.

The physical interpretation of the numerical simula-
tion results of the magnetization and magnetization
direction fluctuations in the Heisenberg model is as fol-
lows: In the ordered ferromagnetic phase up to the criti-
cal point, the magnetization direction is subject to a con-
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FIG. 4. Log-log plot of the R /S value vs time range 7 for the
zero-field magnetization fluctuations for a temperature in the
ferromagnetic phase, T/7,=0.69, (O), and a temperature close
to the critical point, T/7T.=1 (@). The best linear fits to the
different data sets over long time ranges are given by the solid
lines, which have slopes H, as indicated.
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tinuous symmetry since its direction is not coupled to the
lattice and there is no activation barrier for directional
rotation corresponding to the presence of a Goldstone
mode. Hence the magnetization direction is subject to
critical fluctuations for all temperatures within the fer-
romagnetic phase. This leads to fractional Brownian
motion of the magnetization direction, as observed. In
contrast, the order parameter, i.e., the magnetization, is
not a critical mode, except at T,, where it exhibits frac-
tional Brownian motion. At all other temperatures, in
both the ferromagnetic and the paramagnetic phases, the
order-parameter fluctuations are of short range and are
associated with ordinary Brownian motion. The continu-
ous symmetry of the magnetization direction can be lifted
by an ordering magnetic field, in which case the fluctua-
tions become quenched and the mode is no longer criti-
cal. Ordinary Brownian motion then results over long
time ranges, as observed. At short time ranges, however,
the symmetry-breaking field is not capable of destroying
the power-law correlations, and there is a crossover to or-
dinary Brownian motion only at longer ranges. This
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crossover occurs for shorter time ranges the stronger the
field is.

Our findings of fractional Brownian motion in the
magnetization direction fluctuations in the three-
dimensional Heisenberg model, together with recent simi-
lar results for fractional Brownian motion of director
fluctuations both in simulations and experiments on
liquid crystals [1], all with the same value of the Hurst
exponent, H =~ 1, suggest that fractional Brownian motion
may be a generic phenomenon in systems characterized
by an order parameter of continuous symmetry. There is
at present no theory for the value of H, and it is a chal-
lenge to construct such a theory and possibly relate the
Hurst exponent to well-known dynamic critical ex-
ponents.
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